Math 5 - Trigonometry - fall '06 - Chapter 3 Test (2) Solutions

1. Compute and simplify the average rate of change of $f(x)=2 x^{2}+8 x$ over the given interval. Remember that the average rate of change on the interval $[a, b]$ is the slope of the secant line connecting $[a, f(a)]$ with $[b, f(b)]$.
a. $[0,3]$

SOLN: $\frac{f(3)-f(0)}{3-0}=\frac{42-0}{3}=14$
b. $[a, a+h]$

SOLN: $\frac{f(a+h)-f(a)}{a+h-a}=\frac{2(a+h)^{2}+8(a+h)-2 a^{2}-8 a}{h}=\frac{2 a^{2}+4 a h+2 h^{2}-2 a^{2}-8 a}{h}$

$$
=\frac{4 a h+2 h^{2}}{h}=4 a+2 h
$$

2. Find the maximum value of the given function and state its range in interval notation.
a. $\quad f(x)=-2(x-3)^{2}+8$

SOLN: The max is at $(3,8)$ and the range is $(-\infty, 8]$
b. $f(x)=-2 x^{2}+8 x+1$

SOLN: $f(x)=-2 x^{2}+8 x+1=-2(x-2)^{2}+9$ has a max at $(2,9)$ and the range is $(-\infty, 9]$.
3. Consider the quadratic $f(x)=-3 x^{2}+5 x+7$
a. Express the quadratic function in standard form.

SOLN: $f(x)=-3 x^{2}+5 x+7=-3\left(x-\frac{5}{6}\right)^{2}+\frac{109}{12}$
b. Sketch its graph.

SOLN: The vertex is at $\left(\frac{5}{6}, \frac{109}{12}\right)$. The y-intercept is at $(0,7)$ and the x-intercepts are where $x=\frac{5 \pm \sqrt{109}}{6} \approx 0.833 \pm 1.740=2.573$ or -0.907 Putting this together we have a nice graph:

c. What transformations would be required to transform this function to $y=x^{2}$.

SOLN: Shift $5 / 6$ left, shift $109 / 12$ down, reflect in the x-axis and compress vertically by $1 / 3$.
4. Given the graph of $y=f(x)$ shown at right, graph
a. $\quad y=2 f(x)$

SOLN: This is a vertical stretch by a factor 2 , so the point at $(1,2)$ so stretched to $(1,4)$, the point at $(3,3)$ is stretch to $(3,6)$, the point at $(-1,-2)$ is stretched down to $(-1,-4)$ and the point at $(-3,-3)$ is stretched to $(-3,-6)$
b. $y=f\left(\frac{x}{2}\right)$

SOLN: This is a horizontal stretch by a factor of 2 so the point $(1,2)$ is stretched to $(2,2)$, the point at $(3,3)$ is stretched to $(6,3)$ and so on.
c. $y=2 f(1-x)=2 f(-(x-1))$

SOLN: First shift 1 left, then reflect in y-axis, then stretch vertically by a factor 2 . Thus the point $(1,2)$ goes to $(0,2)$, stays there and is stretched to $(0,4)$. Similarly $(3,3)$ goes to $(2,3)$ then $(-2,3)$ then $(-2,6)$, and the other points, similarly, to produce the graph labeled at right.
d. $y=2-f(x+1)$

This is a shift 1 to the left, followed by a reflection in the x axis and then a shift of 2 up. $(1,2)$ goes to $(0,2)$ then $(0,-2)$ and then $(0,0)$. The other points are similarly transformed to
 produce the graph labeled at right.
5. A mouse stands at point A on the bank of a straight canal, 20 feet wide. To reach point $B, 70$ feet down the canal on the opposite bank, it swims to a point P on the opposite bank and then crawls the remaining distance to B. The mouse swims at 5 feet per minute and crawls at 10 feet per minute. Model the total time of the mouse's trip from A to B as a function of where he lands on
 the opposite side.
SOLN: Let $x=$ the distance down the shore the mouse lands on the other side (see diagram.) Then the remaining distance it needs to travel is $70-x$. The distance D the mouse swims is the hypotenuse of a right triangle with legs of lengths 20 and x. Thus $D=\sqrt{20^{2}+x^{2}}$. Using the formula time $=\frac{\text { distance }}{\text { speed }}$ we have the time swimming is $t_{1}=\frac{\sqrt{x^{2}+400}}{5}$ minutes and the time crawling is $t_{2}=\frac{70-x}{10}$, so the total time is $t=t_{1}+t_{2}=\frac{\sqrt{x^{2}+400}}{5}+\frac{70-x}{10}$
6. Consider $f(x)=x^{2}$
a. Write a formula for the function that results from shifting 2 units left, reflecting in the y-axis and then stretching horizontally by a factor 3 , in that order.
SOLN: $f(x)=-\left(\frac{x}{3}+2\right)^{2}$
b. What transformations on $f(x)$, in order, would produce this formula: $y=2-\left(\frac{x}{2}-1\right)^{2}$

SOLN: Shift 1 unit right, stretch horizontally by 2 , reflect in the x-axis and shift up 2 .
7. Suppose $f(x)=\sqrt{x-1}$ and $g(x)=\frac{1}{x-2}$.
a. Find the domain of $(f \circ g)(x)$

SOLN: First, x must be in the domain of g, so x is not 2 . then the output of g must be greater than 1 , so that f is real-valued. Thus the domain is the interval $(2,3]$.
b. Find the domain of $(g \circ f)(x)$

SOLN: First, x must be in the domain of f, so $x \geq 1$. Then the output of f must not be 2 , so x is not 5 . Thus the domain is $[1,5) \cup(5, \infty)$.
8. Find a formula for the inverse function of $f(x)=(x+1)^{3}-3$ and sketch a graph for $f^{-1}(x)$ and $f(x)$ together showing the symmetry through the line $y=x$.
SOLN: $y=(x+1)^{3}-3 \Leftrightarrow x=-1+\sqrt[3]{y+3}$ so the inverse function is $f^{-1}(x)=-1+\sqrt[3]{x+3}$

